
THE	GEORGE	WASHINGTON	UNIVERSITY	
SCHOOL	OF	ENGINEERING	AND	APPLIED	SCIENCE	

DEPARTMENT	OF	ELECTRICAL	AND	COMPUTER	ENGINEERING	
	
	
	
	
	
	

	
	

CLASSIFIER	FOR	CONGRESSIONAL	BILLS		
USING	MACHINE	LEARNING	ALGORITHMS	

	
	
	
	
	
	
	

Final	Project	Report	
	
	
By	
	
	

Brandon	Bernier	
	
	
	

	
	
	
	
	

Prepared	for:	
Professor	Howie	Huang	
ECE	6130	Section	10:	
Grid	and	Cloud	Computing	
	
Submitted:	May	4,	2016	

ii	

Abstract

	 This	report	describes	a	classifier	for	Congressional	bills	that	attempts	to	predict	how	

a	given	legislator	will	vote	on	future	legislation.		Using	publicly	available	voting	histories	for	

all	Senators	and	Representatives	in	the	House,	combined	with	the	full	text	of	all	legislation	

voted	on,	the	goal	is	to	find	similarities	between	bills	that	could	potentially	be	a	good	enough	

predictor	for	future	votes.		The	algorithm	creates	two	sets	of	words	for	each	legislator	unique	

to	bills	they	voted	Yea	or	Nay	on	and	is	able	to	compare	the	words	in	new	bills	to	those	lists.		

In	addition	to	looking	at	the	text	of	a	given	piece	of	upcoming	legislation,	the	political	party	

of	both	the	sponsor	and	the	voter	are	weighted	heavily	in	making	the	final	prediction	for	how	

the	 legislator	 will	 vote.	 	 Important	 aspects	 of	 this	 project	 include	 the	 natural	 language	

processing	that	must	be	done	on	the	full	text	of	the	legislation	to	prepare	it	for	analysis	as	

well	as	the	algorithm	used	to	be	able	to	actually	classify	them	as	potential	Yea	or	Nay	votes.		

Overall,	the	results	of	this	project	show	a	functional	proof	of	concept	design	that,	with	more	

work,	 could	 potentially	 be	 a	 fairly	 accurate	 predictor	 of	 how	 a	 legislator	 will	 vote	 on	

legislation.			

	
	
	

iii	

Table	of	Contents	
Abstract	..	ii	
1.	 Introduction	...	1	

1.1.	 Project	Goals	...	1	
2.	 System	Design	Overview	..	1	

2.1.	 Overall	Design	..	1	
2.2.	 Datascraper	..	2	
2.3.	 Sunlight	Congress	API	...	2	

2.3.1.	 Legislators	...	3	
2.3.1.	 Votes	..	3	
2.3.2.	 Bills	...	4	

2.4.	 Python	...	4	
2.4.1.	 JSON	Storage	..	4	
2.4.2.	 Natural	Language	Toolkit	(NLTK)	..	4	
2.4.3.	 Challenges	...	5	

3.	 System	Design	..	6	
3.1.	 Data	Acquisition	..	6	
3.2.	 Data	Analysis	..	7	

3.2.1.	 Text	Parser	..	7	
3.2.2.	 Frequency	Distribution	...	7	
3.2.3.	 Classifier	..	8	

4.	 Future	Work	..	10	
4.1.	 Natural	Language	Processing	...	10	
4.2.	 Running	on	Amazon	EC2	..	10	
4.3.	 Website	Front	End	..	10	

5.	 Results	...	11	
5.1.	 Compared	with	Bills	Already	Voted	On	...	11	
5.2.	 For	Upcoming	Bills	...	11	

6.	 Conclusions	..	12	
7.	 References	...	13	
8.	 Appendix	–	Project	Proposal	...	14	

8.1.	 Project	Goals	...	14	
8.2.	 Plan	..	14	

8.2.1.	 Sunlight	Congress	API	...	14	
8.2.2.	 TensorFlow	..	15	
8.2.3.	 Docker	..	15	

8.3.	 Milestones	...	15	
8.3.1.	 Midterm	Report	...	15	
8.3.2.	 Final	Report	...	15	

9.	 Appendix	–	Python	Code	...	16	
	
	
	
	

iv	

	
Table	of	Figures	

Figure	1:	Overall	System	Tree	Diagram	..	1	
Figure	2:	Tree	of	Function	Calls	and	Output	within	loadData()	..	6	
Figure	3:	Processing	of	Bill	Text	..	7	
Figure	4:	Basic	Overview	of	Classifier	...	9	

	

1	

1. Introduction	
1.1. Project	Goals	

The	original	goal	of	this	project	was	to	be	able	to	use	natural	language	processing	on	

collected	Congressional	legislation,	relate	it	to	individual	legislators’	voting	history,	and	

determine	their	voting	patterns	and	tendencies	to	predict	future	votes.		How	Congress	

votes	on	legislation	is	not	only	crucially	important	to	the	way	in	which	the	government	

functions,	but	it	is	also	an	interesting	data	analytics	problem	to	be	able	to	work	with	the	

very	large	dataset	available	and	pull	the	desired	information	from	it.		

The	overall	intention	of	the	project	is	to	set	this	algorithm	or	system	up	on	a	server	in	

the	cloud	such	that	anyone	would	be	able	to	easily	work	with	this	information	and	check	

on	how	a	specific	legislator	is	going	to	vote	on	a	specific	bill.		Eventually,	the	goal	would	

be	 to	produce	 a	website	 that	 users	 can	 interact	with	 to	 quickly	 and	 easily	 access	 the	

desired	 information,	 however,	 that	 part	 of	 the	 system	 has	 not	 yet	 been	 completed.		

Additionally,	the	algorithm	itself	is	functional	and	can	be	run	on	an	Amazon	EC2	instance,	

however,	it	requires	more	than	1GB	of	RAM,	which	exceeds	the	free	tier,	and	testing	of	it	

running	in	the	cloud	was	not	completed	for	this	reason.			

	

2. System	Design	Overview	

2.1. Overall	Design	
The	 overall	 design	 of	 this	 project	 consisted	 of	 three	 main	 parts:	 acquiring	 the	

necessary	data,	analyzing	the	data,	and	storing	the	data.		Each	part	of	the	system	works	

in	conjunction	with	 the	others	 to	be	able	 to	 implement	 the	 functionality	of	predicting	

future	votes	on	legislation.		

	
Figure	1:	Overall	System	Tree	Diagram	

2	

2.2. Datascraper	
The	core	of	this	project	depends	on	a	large	dataset	available	to	train	the	algorithm,	

namely	the	full	text	of	all	legislation	in	Congress	since	2009.		Originally,	I	thought	the	full	

text	was	available	directly	through	the	Sunlight	Congress	API,	which	will	be	discussed	

later;	however,	I	came	to	find	out	that	there	was	no	way	to	simply	request	the	full	text	of	

a	given	piece	of	legislation.		You	can	search	over	the	full	text,	but	you	cannot	get	it	back	

directly.		To	overcome	this	obstacle,	I	download	and	worked	with	the	datascraper	used	

by	the	Sunlight	Congress	API	to	be	able	to	obtain	the	raw	full	text	documents	[1].			

The	 datascraper	 is	 an	 open	 source	 project	made	 specifically	 for	 producing	 public	

domain	data	about	Congress	and	has	a	lot	of	functionality	to	be	able	to	gather	all	types	of	

information.	 	 Relevant	 to	 this	 project,	 I	 am	 using	 their	 fdsys.py	 script	 to	 be	 able	 to	

download	text	files	of	all	Congressional	legislation.	While	it	takes	hours	to	download	the	

thousands	of	pieces	of	legislation	from	both	the	House	of	Representatives	and	the	Senate,	

that	luckily	only	needs	to	be	run	once,	and	all	successive	calls	check	the	latest	sitemap	at	

https://www.gpo.gov/smap/fdsys/sitemap.xml	 for	 any	 changes	 and	 downloads	 new	

documents.	 	Run	the	script	by	executing	the	following	line,	specifying	the	collection	of	

BILLS	from	the	114th	Congress	to	be	stored	as	text	files.			

./run fdsys --collections=BILLS --congress=114 --store=text	

2.3. Sunlight	Congress	API	
The	 Sunlight	 Congress	 API	 is	maintained	 by	 the	 Sunlight	 Foundation,	 a	 nonprofit	

group	that	uses	technology	to	make	the	government	and	politics	more	transparent.		Their	

public	API	is	the	backbone	of	this	project,	and	I	have	spent	most	of	my	time	on	the	project	

so	far	working	on	collecting	and	organizing	the	data	I	have	obtained	through	a	variety	of	

the	provided	API	calls.	 	The	main	data	being	pulled	from	the	API	 is	 information	about	

legislators,	the	vote	history	on	individual	bills,	and	some	related	information	about	the	

bills	that	have	been	voted	on	[2].		

https://congress.api.sunlightfoundation.com/[method]

3	

2.3.1. Legislators	
The	legislators	method	is	used	to	obtain	the	names,	and	more	importantly,	the	

bioguide	 IDs	 for	 all	 Congressmen.	 	 The	 bioguide	 ID	 is	 a	 unique	 identifier	 used	

throughout	 the	 project	 to	 identify	 legislators,	 especially	 connected	 to	 their	 voting	

history.		The	following	Python	snippet	shows	the	function	used	to	gather	and	store	

this	 data.	 	 The	 first	 section	makes	 the	 API	 call,	 retrieves	 the	 JSON,	 parses	 it,	 and	

extracts	the	results	from	it.		The	second	section	iterates	through	every	Congressman	

and	creates	a	nested	dictionary	 consisting	of	 their	bioguide	 ID,	name,	and	a	blank	

voting	history.		
def getCongressmenData():
 """ Get all necessary data and create dictionary of Congressmen."""
 congressmen_query = url_base + "legislators?per_page=all" + api_key
 congressmen = urlopen(congressmen_query)
 congressmen_data = congressmen.read()
 congressmen_dict = json.loads(congressmen_data)
 congressmen_results = congressmen_dict["results"]

 for result in range(len(congressmen_results)):
 congress_dict = congressmen_dict["results"][result]
 first_name = congress_dict["first_name"].encode('ascii', 'ignore')
 last_name = congress_dict["last_name"].encode('ascii', 'ignore')
 bioguide_id = congress_dict["bioguide_id"].encode('ascii', 'ignore')
 party = congress_dict["party"].encode('ascii', 'ignore')
 name = first_name + " " + last_name
 vote_dict[bioguide_id] = {"name":name, "party":party, "vote_history":{}}

2.3.1. Votes	
The	votes	method	works	similar	to	the	legislators	API	call,	however	there	is	a	

per	page	limit	of	50	votes.		With	over	7000	votes,	this	resulted	in	150+	different	pages	

to	comb	through	in	order	to	collect	the	voting	histories	of	all	of	the	Congressmen.		This	

proved	 to	be	a	 time-consuming	process	 iterating	page	by	page,	 so	 I	used	Python’s	

multithreading	module	to	speed	up	this	task,	which	worked	well.		Python	has	some	

limitations	that	limit	true	parallelism,	however,	because	this	is	an	IO	bound	task,	the	

speedup	was	still	significant.		Only	the	votes	related	to	bills	being	passed	are	added	

to	the	vote	dictionary	to	eliminate	votes	on	amendments	and	procedural	votes,	etc.,	

and	those	corresponding	bills	are	added	to	a	set	to	be	analyzed	later.		

4	

2.3.2. Bills	
Finally,	 the	bills	method	is	used	to	obtain	the	 last	version	of	a	bill.	 	When	the	

datascraper	downloads	the	text	of	all	bills,	it	creates	multiple	folders	with	multiple	

versions	of	the	bill,	for	instance	when	it	is	introduced	into	the	Senate	(IS)	and	when	it	

becomes	an	enrolled	bill	(ENR).		By	collecting	the	last	version	from	the	API,	I	am	able	

to	 determine	 which	 downloaded	 copy	 to	 analyze	 with	 the	 natural	 language	

processing	portion	of	the	project	later	on.		In	essence,	the	version	of	the	bill	will	direct	

the	text	parser	to	grab	that	specific	version	of	the	bill.		

2.4. Python		

2.4.1. JSON	Storage	
One	challenge	working	with	huge	datasets	and	testing	many	aspects	of	the	code	

was	how	to	store	the	data.		Without	storing	the	data,	I	had	to	pull	it	from	the	API	calls	

every	time	I	executed	the	script,	and	in	the	case	of	reading	in	the	full	text	of	every	bill,	

this	was	quite	 time	consuming.	 	To	avoid	 this,	data	 is	 saved	as	a	 JSON	that	can	be	

quickly	loaded	back	later	[3].		Loading	the	entire	voting	history	and	the	full	text	of	the	

bills	 only	 takes	 a	 few	 seconds	 to	 start	 up,	 opposed	 to	 the	many	minutes	 it	would	

otherwise	require.			

One	of	the	quirks	about	working	with	JSON	files	in	Python	2.7.11	is	that	when	

the	JSON	file	is	loaded	in,	all	of	the	text	is	Unicode	rather,	which	is	standard	in	Python	

3,	rather	than	ASCII	strings,	which	are	common	to	Python	2.7.11.		Figuring	out	that	

this	was	an	issue	was	somewhat	time	consuming,	but	a	simple	function	that	is	able	to	

encode	the	Unicode	text	from	the	JSON	into	ASCII	strings	to	work	in	Python	2.7	was	

implemented.			

2.4.2. Natural	Language	Toolkit	(NLTK)	
The	only	major	change	 to	 the	project	since	 the	project	proposal	has	been	 the	

decision	against	 implementing	 the	machine	 learning	algorithms	using	TensorFlow	

because	it	seemed	to	be	more	complex	than	necessary	for	this	specific	task..		While	

TensorFlow	 sounded	 appealing	 to	 start,	 I	 quickly	 realized	 that	 it	 would	 simply	

overcomplicate	the	project	with	little	benefit	because	I	would	not	be	able	to	run	the	

5	

project	across	multiple	machines,	as	TensorFlow	is	intended	for,	without	making	use	

of	 multiple	 machines	 and	 instances	 in	 AWS.	 	 TensorFlow	 also	 relies	 on	 writing	

machine	learning	algorithms	from	scratch	using	the	primitives	it	provides,	which	is	

way	 beyond	what	 I	 felt	 I	would	 be	 able	 to	 accomplish	 for	 this	 project,	 having	 no	

previous	background	with	machine	learning.			

So,	 instead	 of	 TensorFlow,	 I	 chose	 to	 work	 with	 the	 widely-used	 Natural	

Language	Toolkit	for	Python	to	implement	the	natural	language	processing	aspect	of	

this	project	[4].	I	used	this	toolkit	to	get	a	frequency	distribution	of	the	words	in	each	

bill	as	well	as	some	of	its	functionality	to	actually	pull	words	from	bills.	 	This	code	

snippet	shows	the	necessary	preprocessing	of	the	full	text	of	the	bill	to	be	able	to	get	

it	into	a	useful	form.		I	make	sure	all	of	the	text	is	lowercase,	remove	any	numbers,	

replace	all	punctuation	with	spaces,	then	split	the	string	at	every	space	to	break	it	into	

a	list	of	words.	 	I	also	filter	out	stopwords	included	in	NLTK	such	as	“the,”	“a,”	and	

“an,”	that	are	unimportant	to	the	overall	meaning	of	the	bill	as	well	as	any	other	word	

it	finds	that	is	less	than	three	characters.		

def getFreqDist(bill_id):
 bill_text = full_texts[bill_id]
 replacement = string.maketrans(string.punctuation, ' '*len(string.punctuation))
 bill_formatted = bill_text.lower().translate(replacement, string.digits)
 all_words = filter(lambda w: not w in stop_words, bill_formatted.split())
 bill_words = [word for word in all_words if len(word) >= 3]
 freq_dist = nltk.FreqDist(bill_words)

 for word in freq_dist.most_common():
 print word
 return freq_dist

2.4.3. Challenges	
The	biggest	 challenge	 in	 choosing	 to	use	Python	 for	 this	project	 is	 that	 I	 had	

never	used	it	before,	so	part	of	my	goal	for	the	midterm	project	milestone	included	

the	learning	curve	I	had	to	overcome	to	get	started.		I	was	able	to	teach	myself	Python	

and	relatively	quickly	get	to	work	coding	the	many	functions	required	to	process	the	

data.		The	next	section	goes	into	more	specific	system	implementation	details.		

			

6	

3. System	Design	

3.1. Data	Acquisition	
The	 most	 important	 part	 of	 the	 code	 attached	 in	 the	 appendix	 is	 the	 loadData()	

method	that	allows	me	to	acquire	all	of	the	necessary	data	and	proceed	accordingly.		If	

the	data	has	not	changed,	I	simply	load	the	data	that	was	previously	acquired.		As	was	

mentioned	earlier,	a	large	part	of	the	data	acquisition	section	of	this	project	relies	on	the	

datascraper	 as	well	 as	 some	 functions	 I	 created	 in	Python	 to	 grab	 all	 of	 the	 required	

information.	 	 Figure	2	 shows	 the	 full	 tree	of	 function	 calls	within	 loadData()	 to	 show	

exactly	what	is	being	used	and	how	it	all	relates.		Once	the	loadData()	function	is	called,	

the	other	functions	are	called	from	within	it.		Three	major	pieces	of	data	are	necessary	

for	the	operation	of	this	project	including	data	about	legislators,	data	about	the	votes	cast,	

and	 the	 full	 text	 of	 all	 of	 the	 bills.	 	 Each	 of	 the	 inner	 functions	 eventually	 saves	 the	

necessary	data	in	the	dictionaries	as	shown.		However,	if	the	data	is	already	stored,	those	

files	are	read	instead	of	executing	these	functions.		

	
Figure	2:	Tree	of	Function	Calls	and	Output	within	loadData()	

7	

	

3.2. Data	Analysis	
There	are	a	few	separate	methods	used	to	perform	the	data	analysis	in	this	project.		

First,	the	data	has	to	be	prepared	for	analysis,	which	in	the	case	of	the	full	texts	of	bills,	

the	words	need	to	be	separated,	formatted	uniformly,	and	counted.		Once	this	is	done,	the	

actual	classification	of	bills	for	individual	legislators	can	be	done,	yielding	the	predicted	

votes.			

3.2.1. Text	Parser	
One	 of	 the	 more	 important	 pieces	 of	 this	 project	 is	 a	 small,	 yet	 extremely	

powerful	function	that	returns	a	list	of	all	of	the	words	in	a	bill.		While	that	may	not	

sound	 all	 that	 impressive,	 the	 complicated	 part	 is	 choosing	 what	 words	 and	

characters	not	to	include	in	this	list	to	ensure	that	the	list	only	has	those	words	most	

important	or	relevant	to	the	overall	meaning	of	the	bill.		In	order	to	properly	count	

the	words	in	a	bill,	they	must	all	be	identical,	including	uppercase	or	lowercase	letters.		

To	account	for	this,	the	parser	makes	all	characters	lowercase	and	removes	any	digits	

in	the	bill	as	these	are	unimportant	for	this	circumstance.		Figure	3	shows	the	rest	of	

the	processing	done	on	the	text	until	the	result,	a	list	of	important	words	in	a	bill,	is	

returned.		

	
Figure	3:	Processing	of	Bill	Text	

3.2.2. Frequency	Distribution	
Once	 the	 list	 of	 words	 in	 a	 bill	 is	 obtained,	 we	 can	 achieve	 a	 frequency	

distribution	of	the	words	in	that	bill.		To	do	this,	I	use	the	FreqDist()	function	included	

in	 the	Natural	Language	Toolkit.	 	By	applying	 the	most_common()	method	on	that	

frequency	distribution,	a	list	of	tuples	including	the	word	and	the	count	of	that	word	

is	returned.		

An	extension	of	this	capability	for	a	single	bill	is	being	able	to	do	it	for	a	single	

legislator	 using	 their	 ID.	 	 The	 getIDFreqDist()	 function	 iterates	 over	 every	 bill	 a	

8	

legislator	has	voted	on,	gathers	the	words	from	those	bills,	and	creates	a	master	list	

of	all	of	the	words	in	bills	the	legislator	voted	Yea	on	and	those	they	voted	Nay	on.		

This	distribution	of	the	most	common	words	is	important	later	when	comparing	the	

words	from	upcoming	bills	for	each	legislator.		To	narrow	these	lists	even	further,	the	

list	of	yea	words	and	nay	words	specifically	exclude	any	words	common	to	bills	that	

received	a	yea	and	a	nay	vote.		This	is	done	with	a	list	comprehension.		The	reason	for	

doing	this	was	to	eliminate	many	of	the	Congress	specific	stopwords	that	add	little	

meaning	to	the	bill	overall,	but	are	more	procedural.		For	instance,	the	word	deleted	

is	 often	 used	 throughout	 bill	 drafts,	 but	 since	 it	 is	 in	 both	 sets	 of	 bills,	 it	 is	

automatically	excluded.			

3.2.3. Classifier	
The	 classifier	 itself	 is	 the	 final	 piece	 of	 the	 algorithm	 that	 decides	whether	 a	

legislator	is	like	to	vote	Yea	or	Nay	on	a	given	bill.		To	accomplish	this,	I	am	using	two	

different	methods	that	complement	each	other.		Originally,	this	was	intended	to	use	

more	 complex	 machine	 and	 deep	 learning	 algorithms,	 however,	 without	 any	

background	 in	 those	 algorithms	 they	 were	 quite	 difficult	 to	 implement	 in	 a	

meaningful	way.		Also,	after	doing	some	more	research	on	the	topic,	it	is	possible	to	

make	 a	 very	 good	prediction	based	 solely	on	 a	 legislator’s	political	 party.	 	 In	 fact,	

Congress	just	set	a	new	record	high	percentage	for	voting	along	party	lines	of	92%	of	

the	time	for	Republicans	and	94%	of	the	time	for	Democrats	[5].			

Using	political	party	alone	would	yield	high	prediction	accuracy,	however,	it	was	

not	 the	main	 goal	 of	 the	project.	 	 So,	 in	 addition	 to	making	 a	prediction	based	on	

political	 parties,	 the	 classifier	 includes	 information	based	 on	 the	number	 of	 times	

words	 appear	 in	 the	upcoming	bill	 and	how	often	 they	 appeared	 in	previous	bills	

voted	on	by	 the	 legislator.	 	 The	words	of	 upcoming	bills	 are	parsed	 as	previously	

explained,	then	compared	against	the	list	of	words	existing	in	bills	a	legislator	voted	

“Yea”	on	and	those	they	voted	“Nay”	on.		To	make	an	actual	prediction	based	on	this,	

two	counters	exist	for	each	bill	that	add	up	the	frequencies	of	the	words	stored	in	the	

lists.		For	instance,	say	“livestock”	was	in	a	bill	54	times	that	a	legislator	voted	in	favor	

of,	if	it	appears	in	the	upcoming	bill,	54	is	added	to	the	yea	count.		

9	

The	following	figure	better	simplifies	how	exactly	the	classifier	makes	decisions.		

It	is	also	worth	noting	that	the	option	to	classify	independently	by	political	party	or	

by	words	is	still	available.		The	goal	is	that	combining	knowledge	of	political	parties	

as	well	 as	 the	 language	processing	of	 the	word	 counting	method	will	 increase	 the	

accuracy	of	voting	prediction	in	this	system.		

	
Figure	4:	Basic	Overview	of	Classifier	

	

	
	 	

10	

4. Future	Work	

4.1. Natural	Language	Processing	
Looking	 into	 the	 actual	 feasibility	 or	 necessity	 of	 improving	 the	 natural	 language	

processing	capabilities	of	this	system	would	be	interesting.		As	already	mentioned,	there	

is	good	data	that	proves	voting	in	favor	of	the	sponsor’s	political	party	happens	just	over	

90%	of	the	time.		Originally	I	planned	to	do	some	form	of	k-means	clustering	to	be	able	

to	 classify	 the	bill,	 but	 it	 proved	 that	 other	 algorithms	 such	as	 counting	 the	words	 in	

combination	with	knowledge	of	the	legislator’s	political	party	might	work	just	as	well.			

4.2. Running	on	Amazon	EC2	

The	goal	of	this	project	was	always	to	be	able	to	run	this	algorithm	remotely	in	the	

cloud.		This	will	not	be	a	big	deal	because	it	is	mainly	as	simple	as	copying	the	directory	

to	an	EC2	instance	and	running	the	Python	script	from	there.		However,	in	attempting	to	

test	this	capability,	I	realized	that	the	free	tier	of	AWS	would	not	provide	enough	memory	

necessary	 to	 load	 in	 all	 of	 the	 full	 texts	 of	 the	bills	 and	worth	with	 the	 large	dataset.		

Whenever	 I	would	attempt	 to	 run	 it	 on	 the	 cloud	with	 it	 loading	 in	 the	 full	 texts,	 the	

process	would	automatically	be	killed.		Commenting	out	the	load	of	the	texts	proved	that	

that	was	indeed	the	problem.			

4.3. Website	Front	End	

Ideally,	my	hope	was	to	be	able	to	have	the	backend	functioning	sooner	so	that	I	could	

turn	 this	 project	 into	 an	 interactive	 website	 that	 provides	 the	 data	 in	 a	 nicer	 way;	

however,	with	the	amount	of	work	left	to	be	done	figuring	out	the	classifier	algorithm,	

that	was	not	possible	this	semester.		Working	with	a	partner	would	have	probably	been	

more	 ideal	 to	 being	 actually	 able	 to	 complete	 both	 the	 data	 processing	 and	 a	 nicer	

interface.		Nonetheless,	this	is	an	interesting	project	I	would	like	to	continue	working	on	

and	eventually	get	that	finished.		

	

11	

5. Results	
5.1. Compared	with	Bills	Already	Voted	On	

One	attempt	that	I	made	to	be	able	to	test	this	project	was	to	run	every	legislator	and	

bill	through	the	classifier	to	see	if	it	would	be	able	to	correctly	predict	the	outcome	based	

on	the	words	in	it.		There	seemed	to	be	two	sets	of	legislators	when	I	performed	this	test.		

Those	who	had	a	few	hundred	votes	came	out	with	a	very	high	90s	percentage	of	correct	

predictions,	while	many	legislators	who	had	over	1000	or	2000	votes	landed	around	65%	

correct.		I	believe	the	results	were	this	way	for	a	few	reasons.		Those	with	the	lower	total	

vote	count	were	Senators,	where	 there	are	 less	bills	overall	 and	most	are	of	a	decent	

length.	 	 The	House	 of	 Representatives,	 on	 the	 other	 hand,	 often	 has	many	more	 bills	

before	them	and	many	are	short	resolutions	that	do	not	have	very	many	unique	words	in	

them.		This	causes	there	to	be	many	cases	where	it	is	difficult	to	predict	the	vote	based	

solely	on	words.		

Additionally,	this	system	does	not	account	for	abstentions,	or	Not	Voting	votes.		It	also	

does	not	keep	track	of	Independent	Congressmen.		It	will	only	ever	predict	a	“Yea”	or	a	

“Nay.”	Another	problem	that	I	noticed	while	trying	to	test	the	algorithm	is	that	the	system	

is	severely	unbalanced	in	that	most	of	the	votes	it	is	based	on	were	“Yea”	votes,	and	it	

seems	that	there	are	few	bills	for	each	legislator	that	they	voted	“Nay”	on.		This	makes	it	

difficult	to	create	a	broad	enough	set	of	Nay	words	for	a	legislator	to	properly	be	able	to	

decide	on	future	bills.		

5.2. For	Upcoming	Bills	

Testing	for	upcoming	bills	shows	some	promise.		When	testing	for	a	Republican,	two	

current	Republican	sponsored	bills	came	up	as	predictions	of	“Yea.”		However,	because	

of	the	limited	timeframe	and	the	nature	of	Congress,	it	will	be	some	time	before	future	

votes	 are	 actually	 counted	and	 can	be	 compared	against	 the	predictions	made	by	 the	

algorithm	today.		There	are	also	only	currently	two	upcoming	pieces	of	legislation,	so	to	

properly	test	the	system,	it	will	take	a	lot	of	time	to	get	enough	data	to	accurately	suggest	

some	meaningful	results.			

	

12	

6. Conclusions	
Although	there	were	some	minor	tweaks	to	the	project	implementation	as	I	went	along,	

I	was	able	to	successfully	meet	my	midterm	project	goals,	and	now	also	the	goals	I	set	in	the	

midterm	 project	 report.	 	 I	 would	 consider	 the	 project	 functioning	 in	 that	 it	 will	 make	

predictions	 based	 on	 various	 sources	 of	 information	 and	puts	 a	 lot	 of	 information	 about	

Congress	 and	 legislation	 very	 quickly	 at	 your	 fingertips.	 	 I	 would	 like	 to	 have	 more	

substantial	test	data	before	suggesting	that	the	method	by	counting	words	is	any	better	than	

simply	predicting	based	on	political	party,	but	the	amount	learned	to	get	to	this	point	has	

been	extensive.		

This	project	forced	me	to	learn	a	lot	on	my	own	and	delve	deeper	into	topics	of	cloud	

computing,	machine	learning,	and	Python	programming.		It	was	very	interesting	to	be	able	

to	use	public	APIs	with	Python	 to	quickly	grab	and	store	 tons	of	data	 that	 could	 then	be	

manipulated	and	worked	with.		With	more	work,	this	project	could	continue	to	be	developed	

into	something	more	fully	functional	and	better	tested,	with	a	much	nicer	interface.			

13	

7. References	
[1]	@unitedstates.	GitHub.	[Online].	https://github.com/unitedstates/congress	
[2]	Sunlight	Foundation.	Sunlight	Congress	API.	[Online].	

https://sunlightlabs.github.io/congress/index.html	
[3]	Python	Software	Foundation.	Python	2.7.11	Documentation.	[Online].	

https://docs.python.org/2/library/json.html	
[4]	Steven	Bird,	Ewan	Klein,	and	Edward	Loper.	(2009,	June)	Natural	Language	Processing	

with	Python:	Analyzing	Text	with	the	Natural	Language	Toolkit.	[Online].	
http://www.nltk.org/book_1ed/	

[5]	National	Journal.	(2014,	February)	National	Journal.	[Online].	
https://www.nationaljournal.com/congress/2014/02/03/congress-sets-record-
voting-along-party-lines	

	
	 	

14	

8. Appendix	–	Project	Proposal	
8.1. Project	Goals	

The	overall	goal	of	this	project	is	to	create	a	classifier	capable	of	predicting	how	a	

Congressman	 will	 vote	 on	 future	 legislation	 based	 on	 their	 past	 voting	 history.	 To	

accomplish	this,	machine	learning	algorithms	will	need	to	be	used	to	train	the	classifier	

based	on	the	huge	amount	of	data	available	on	past	bills	and	how	each	Congressman	has	

previously	voted.		

The	 content	 of	 all	 legislation	 on	 record	 must	 be	 analyzed	 along	 with	 how	 each	

member	of	Congress	voted	on	each	piece	of	 legislation.	By	comparing	 the	 language	 in	

previous	bills	with	the	language	of	upcoming	bills,	it	should	be	possible	to	predict	how	

likely	someone	is	to	vote	Yea,	Nay,	or	Abstain.	For	instance,	a	Senator	with	a	long	history	

of	 supporting	 gun	 rights	 and	 voting	 against	 gun	 control	 measures	 is	 very	 likely	 to	

continue	to	vote	against	gun	control	legislation.	It	will	require	complex	machine	learning	

algorithms	 to	 be	 able	 to	 accurately	 create	 such	 a	 classifier.	 Google’s	 recently	 open-

sourved	machine	learning	library	TensorFlow	will	be	used.		

If	the	backend	algorithm	comes	together	as	described	and	proves	to	be	functional,	

this	project	can	also	be	easily	deployed	to	the	cloud	with	Docker	as	TensorFlow	has	built-

in	support	for	this.	Docker	allows	the	TensorFlow	installation	to	be	completely	isolated	

in	a	container	from	other	packages	and	things	on	the	system.	A	simple	frontend	website	

could	be	created	to	show	the	results	from	the	algorithm.	

8.2. Plan	

8.2.1. Sunlight	Congress	API	
Sunlight	Foundation	provides	a	live	JSON	API	for	the	people	and	work	of	

Congress.	This	API	will	be	critical	in	providing	all	of	the	necessary	data	for	this	

project.	It	provides	access	to	all	legislation	in	both	the	House	and	Senate	dating	back	

to	2009,	a	history	of	all	roll	call	votes,	and	live	updates	on	upcoming	bills.	The	voting	

history	on	legislation	since	2009	will	be	examined	and	studied	to	create	the	

classifier,	and	the	information	regarding	upcoming	bills	will	be	used	as	the	test	

cases	for	the	classifier.		

15	

8.2.2. TensorFlow	
TensorFlow	is	Google’s	open-sourced	software	library	for	machine	learning.	It	

provides	a	flexible	architecture	that	makes	it	easy	to	do	computation	across	one	or	

more	CPUs	or	GPUs.	I	will	use	this	library	as	the	basis	for	creating	the	machine	

learning	algorithm	for	this	project.		

8.2.3. Docker	
Docker	provides	the	ability	to	easily	install	and	run	TensorFlow	in	a	container	

isolated	from	other	packages	on	the	machine.	The	use	of	Docker	will	simply	be	an	

added	element	to	this	project	because	it	was	an	interesting	topic	we	have	discussed	

in	class,	but	the	project	relies	on	getting	the	machine	learning	algorithms	working.	

8.3. Milestones	

8.3.1. Midterm	Report	

For	the	midterm	report,	I	plan	to	have	the	basic	functionality	and	theory	fully	

understood	so	that	I	can	move	forward	with	actual	implementation.	I	have	no	

background	in	machine	learning,	so	I	am	fully	expecting	there	to	be	a	very	steep	

learning	curve	to	climb	to	be	able	to	figure	out	exactly	how	to	go	about	

implementing	this	project.	The	first	step	that	should	be	easy	enough	to	accomplish	

is	getting	familiar	with	the	Sunlight	Congress	API,	how	exactly	I	will	be	accessing	the	

necessary	data,	what	format	it	is	provided	in,	and	how	that	data	will	be	fed	into	the	

machine	learning	algorithm.		

8.3.2. Final	Report	
By	the	final	report,	I	hope	to	have	the	project	completed	and	fully	functional.	

This	includes	having	a	classifier	that	has	been	fully	trained	using	the	data	provided	

by	the	Sunlight	Congress	API	as	well	as	functional	machine	learning	algorithms	that	

accurately	predict	how	Congressmen	will	vote	on	future	legislation	and	the	overall	

outcome	of	that	legislation	(whether	or	not	it	will	pass,	etc.).	How	that	data	is	finally	

presented	will	be	entirely	dependent	on	it	working	first,	but	it	would	be	ideal	to	

have	some	basic	website	set	up	that	shows	upcoming	legislation	as	well	as	the	

predictions	made	by	the	algorithm.		 	

16	

9. Appendix	–	Python	Code	
#######################################
Brandon Bernier
ECE 6130 - Grid and Cloud Computing
Final Project
Classifier for Congressional Bills
Using Machine Learning Algorithms
#######################################

import re
import string
import json

import os.path
import subprocess

from urllib2 import urlopen
from threading import Thread

import nltk
from nltk.corpus import stopwords

url_base = "https://congress.api.sunlightfoundation.com/"
api_key = "&apikey=99edce157d934983ad380f55ae4c1757"
per_page = "&per_page=50"

stop_words = set(stopwords.words("english"))

vote_dict = {}
full_texts = {}
bill_ids = {}
versions = set(['eh', 'is', 'cdh', 'ih', 'cds', 'lts', 'es', 'pap', 'pp',
 'rs', 'pcs', 'rcs', 'enr', 'rh', 'eah', 'pcs2', 'eas',
 'rfs2', 'rfs', 'rds', 'ath', 'ats', 'rfh'])

class VoteWhip(Thread):
 """Thread class for multithreading to get vote history."""
 def __init__(self, thread_id):
 Thread.__init__(self)
 self.thread_id = thread_id

 def run(self):
 getVoteDataSinglePage(self.thread_id)

def getCongressmenData():
 """ Get all necessary data and create dictionary of Congressmen."""
 congressmen_query = url_base + "legislators?per_page=all" + api_key
 congressmen = urlopen(congressmen_query)
 congressmen_data = congressmen.read()
 congressmen_dict = json.loads(congressmen_data)
 congressmen_results = congressmen_dict["results"]

17	

 for result in range(len(congressmen_results)):
 congress_dict = congressmen_dict["results"][result]
 first_name = congress_dict["first_name"].encode('ascii', 'ignore')
 last_name = congress_dict["last_name"].encode('ascii', 'ignore')
 bioguide_id = congress_dict["bioguide_id"].encode('ascii', 'ignore')
 party = congress_dict["party"].encode('ascii', 'ignore')
 name = first_name + " " + last_name
 vote_dict[bioguide_id] = {"name": name, "party": party, "vote_history": {}}

def getVoteDataSinglePage(page):
 """Get vote data for single page of results."""
 page_num = "&page=" + str(page)
 vote_query = url_base + "votes?fields=voter_ids,bill_id,vote_type" + per_page
+ page_num + api_key
 votes = urlopen(vote_query) #instance
 vote_data = votes.read() #JSON
 vote_dict = json.loads(vote_data) #dict
 vote_results = vote_dict["results"] #list

 for result in range(len(vote_results)):
 result_dict = vote_results[result]
 if "bill_id" in result_dict and result_dict["vote_type"] == "passage":
 addVotes(result_dict)

def getVoteData():
 """Get all of the vote data available."""
 vote_query = url_base + "votes?fields=voter_ids,bill_id,vote_type" + api_key
 votes = urlopen(vote_query) #instance
 vote_data = votes.read() #JSON
 vote_dict = json.loads(vote_data) #dict
 vote_count = vote_dict["count"] #int
 page_count = (vote_count/50) + 1
 threads = []

 for page in range(page_count): #spawn 1 thread per page here
 thread = VoteWhip(page+1)
 thread.start()
 threads.append(thread)

 for thread in threads:
 thread.join()

def addVotes(result_dict):
 """Function to add a vote to Congressman's voting history."""
 bill_id = result_dict["bill_id"].encode('ascii','ignore')
 if bill_id not in bill_ids:
 bill_ids.update({bill_id: {"sponsor_party": getBillSponsor(bill_id)}})
 for voter in result_dict["voter_ids"]:
 vote = result_dict["voter_ids"][voter].encode('ascii','ignore')
 if voter in vote_dict:
 vote_dict[voter]["vote_history"][bill_id] = vote

18	

def getBillSponsor(bill_id):
 """Get the political party of the sponsor of a bill."""
 bill_query = url_base + "bills?bill_id=" + bill_id + api_key
 bill = urlopen(bill_query)
 bill_data = bill.read()
 bill_dict = json.loads(bill_data)
 bill_results = bill_dict["results"]

 if bill_results and "sponsor_id" in bill_results[0]:
 sponsor_id = bill_results[0]["sponsor_id"]
 if sponsor_id in vote_dict:
 sponsor_party = vote_dict[sponsor_id]["party"]
 return sponsor_party
 else:
 return "NA"

def getUpcomingBills():
 """Get info for all upcoming bills."""
 new_bills_query = url_base + "upcoming_bills?" + per_page + api_key
 new_bills_url = urlopen(new_bills_query) #instance
 new_bills_data = new_bills_url.read() #JSON
 new_bills_dict = json.loads(new_bills_data) #dict
 results = new_bills_dict["results"] #list
 new_bills = {}

 for result in range(len(results)):
 new_bill = results[result]["bill_id"].encode('ascii', 'ignore')
 sponsor_party = getBillSponsor(new_bill).encode('ascii', 'ignore')
 new_bills.update({new_bill: {"sponsor_party": sponsor_party}})
 readBill(new_bill)

 return new_bills

def printBills():
 """Print all bills in the vote history."""
 for bill in bill_ids:
 print bill, bill_ids[bill]["sponsor_party"]

def printBillInfo(bill_id):
 """Print all info for bill with bill_id."""
 print bill_id, bill_ids[bill_id]["sponsor_party"]

def printCongressmen():
 """Print list of all Congressmen."""
 for congressman in sorted(vote_dict):
 print congressman, vote_dict[congressman]["name"],
vote_dict[congressman]["party"]

def getIDVoteHistory(bioguide_id):
 """Get the vote history of a single Congressman by ID."""
 return vote_dict[bioguide_id]["vote_history"]

19	

def printIDVoteHistory(bioguide_id):
 """Print the vote history of a single Congressman by ID."""
 print bioguide_id + ":", vote_dict[bioguide_id]["name"],
vote_dict[bioguide_id]["party"]
 vote_history = getIDVoteHistory(bioguide_id)
 for vote in sorted(vote_history):
 print "\t" + vote + ":", vote_history[vote]

def printVoteHistoryAll():
 """Print the vote history of all Congressmen."""
 for congressman in sorted(vote_dict):
 printIDVoteHistory(congressman)

def getBillVersion(bill_id):
 """Get the last version of a bill."""
 bill_query = url_base + "bills?bill_id=" + bill_id + api_key
 bill = urlopen(bill_query)
 bill_data = bill.read()
 bill_dict = json.loads(bill_data)
 bill_results = bill_dict["results"]

 if bill_results and "last_version" in bill_results[0]:
 version =
bill_results[0]["last_version"]["version_code"].encode('ascii','ignore')
 return version
 else:
 return "NA"

def getBillVersionsAll():
 """Create a set of all possible bill versions."""
 for bill in bill_ids:
 version = getBillVersion(bill)
 versions.add(version)
 print versions

def readBill(bill_id):
 """Read in the full text version of a bill."""
 split = bill_id.split("-")
 bill = split[0]
 session = split[1]
 bill_split = re.split('(\d+)', bill)
 bill_type = bill_split[0]
 version = getBillVersion(bill_id)
 folder_path = "congress-master/data/" + session + "/bills/" + bill_type + "/" + bill
+ "/text-versions/"
 file_path = folder_path + version + "/document.txt"

 print file_path

 if os.path.exists(file_path):
 with open(file_path, "r") as full_text:
 bill_text = full_text.read()

20	

 full_texts[bill_id] = bill_text
 else:
 for vers in versions:
 file_path = folder_path + vers + "/document.txt"
 if os.path.exists(file_path):
 with open(file_path, "r") as full_text:
 bill_text = full_text.read()
 full_texts[bill_id] = bill_text
 break
 else:
 pass

def readAllBills():
 """Read in the full text version of all bills."""
 for bill_id in bill_ids:
 print bill_id
 readBill(bill_id)

def getBillWords(bill_id):
 """Parse a bill and return a list of all meaningful words in the bill."""
 bill_words = []
 if bill_id in full_texts:
 bill_text = full_texts[bill_id]
 replacement = string.maketrans(string.punctuation, '
'*len(string.punctuation))
 bill_formatted = bill_text.lower().translate(replacement, string.digits)
 all_words = filter(lambda w: not w in stop_words,
bill_formatted.split())
 bill_words = [word for word in all_words if len(word) >= 3]
 else:
 pass

 return bill_words

def getFreqDist(bill_id):
 """Gets the frequency distribution for a given bill."""
 bill_words = getBillWords(bill_id)
 freq_dist = nltk.FreqDist(bill_words)

 print bill_id
 for word in freq_dist.most_common():
 print word

 return freq_dist.most_common()

def getIDFreqDist(bioguide_id):
 """Gets the frequency distribution of words in all bills voted on by specific
legislator."""
 vote_history = getIDVoteHistory(bioguide_id)
 word_dict = {"bill_words": [], "yea_words": [], "nay_words": []}
 temp_words = []

21	

 yea_words_set = set()
 nay_words_set = set()

 for vote in sorted(vote_history):
 temp_words = getBillWords(vote)
 word_dict['bill_words'] += temp_words
 if vote_history[vote] == "Yea":
 word_dict['yea_words'] += temp_words
 for word in temp_words:
 yea_words_set.add(word)
 elif vote_history[vote] == "Nay":
 word_dict['nay_words'] += temp_words
 for word in temp_words:
 nay_words_set.add(word)
 else:
 pass

 yea_wordss = yea_words_set.difference(nay_words_set)
 nay_wordss = nay_words_set.difference(yea_words_set)

 yea_words = [x for x in word_dict['yea_words'] if x in yea_wordss]
 nay_words = [x for x in word_dict['nay_words'] if x in nay_wordss]

 yea_freq_dist = nltk.FreqDist(yea_words).most_common()
 nay_freq_dist = nltk.FreqDist(nay_words).most_common()

 freq_dist = {"yea": yea_freq_dist, "nay": nay_freq_dist}

 return freq_dist

def ascii_encode_dict(data):
 ascii_encode = lambda x: x.encode('ascii', 'ignore')
 return dict(map(ascii_encode, pair) for pair in data.items())

def loadData():
 """Either gets all necessary data or loads previously stored data."""
 global vote_dict, bill_ids, full_texts
 print "Loading Data"
 subprocess.Popen("./run fdsys --collections=BILLS --congress=114 --store=text",
 cwd="congress-master/", stdout=subprocess.PIPE, shell=True)
 if os.path.exists("json/vote_history.json") and os.path.exists("json/bill_ids.json"):
 with open('json/vote_history.json','r') as votes_json:
 vote_dict = json.load(votes_json)
 with open('json/bill_ids.json','r') as bill_ids_json:
 bill_ids = json.load(bill_ids_json)
 else:
 getCongressmenData()
 getVoteData()
 with open("json/vote_history.json", 'w') as votes_json:
 json.dump(vote_dict, votes_json)
 with open("json/bill_ids.json", 'w') as bill_ids_json:
 json.dump(bill_ids, bill_ids_json)

22	

 if os.path.exists("json/full_texts.json"):
 with open("json/full_texts.json", 'r') as full_texts_json:
 full_texts = json.load(full_texts_json, object_hook=ascii_encode_dict)
 else:
 getBillVersionsAll()
 readAllBills()
 with open("json/full_texts.json", 'w') as full_texts_json:
 json.dump(full_texts, full_texts_json)
 print "Loading Data Complete"

def classifierByParty(bioguide_id):
 """Returns predictions for all upcoming bills based solely on the voter and sponsor's
political parties."""
 voter_party = vote_dict[bioguide_id]["party"]
 new_bills = getUpcomingBills()

 for bill in new_bills:
 sponsor_party = new_bills[bill]["sponsor_party"]
 if voter_party == sponsor_party:
 new_bills[bill].update({"vote": "Yea"})
 else:
 new_bills[bill].update({"vote": "Nay"})

 print bioguide_id, vote_dict[bioguide_id]["name"], voter_party
 for bill in new_bills:
 print bill, new_bills[bill]["sponsor_party"], new_bills[bill]["vote"]

 return new_bills

def classifierByWords(bioguide_id):
 """Returns a set of predictions for all upcoming bills based on the words in the
bill."""
 new_bills = getUpcomingBills()
 freq_dist = getIDFreqDist(bioguide_id)
 yea_common = dict(freq_dist["yea"])
 nay_common = dict(freq_dist["nay"])

 for bill in new_bills:
 bill_text = getBillWords(bill)
 yea_count = 0
 nay_count = 0
 for word in bill_text:
 if word in yea_common:
 yea_count += yea_common[word]
 if word in nay_common:
 nay_count += nay_common[word]
 if yea_count >= nay_count:
 new_bills[bill].update({"vote": "Yea"})
 else:
 new_bills[bill].update({"vote": "Nay"})
 if yea_count > 10*nay_count or nay_count > 10*yea_count: # If difference is
overwhelming, set confidence high
 new_bills[bill].update({"confidence": 1})
 else:

23	

 new_bills[bill].update({"confidence": 0})
 print "Yea: ", yea_count, "Nay: ", nay_count

 print bioguide_id, vote_dict[bioguide_id]["name"], vote_dict[bioguide_id]["party"]
 for bill in new_bills:
 print bill, new_bills[bill]["sponsor_party"], new_bills[bill]["vote"],
new_bills[bill]["confidence"]

 return new_bills

def classifier(bioguide_id):
 """Combines data from classifying by party and by words to return predictions."""
 by_party = classifierByParty(bioguide_id)
 by_words = classifierByWords(bioguide_id)
 predictions = {}

 for bill in by_words:
 if by_words[bill]["vote"] == by_party[bill]["vote"]:
 predictions.update({bill: {"vote": by_party[bill]["vote"]}})
 elif by_words[bill]["confidence"]:
 predictions.update({bill: {"vote": by_words[bill]["vote"]}})
 else:
 predictions.update({bill: {"vote": by_party[bill]["vote"]}})

 print bioguide_id, vote_dict[bioguide_id]["name"], vote_dict[bioguide_id]["party"]
 for bill in predictions:
 print bill, by_party[bill]["sponsor_party"], predictions[bill]["vote"]

def classifierByWordsTEST(bioguide_id):
 """Tests the algorithm against the dataset itself."""
 new_bills = getIDVoteHistory(bioguide_id) #Pull all bills from vote history.
 freq_dist = getIDFreqDist(bioguide_id)
 yea_common = dict(freq_dist["yea"])
 nay_common = dict(freq_dist["nay"])
 new_bill_votes = {}
 right = 0
 total = 0

 for bill in new_bills:
 bill_text = getBillWords(bill)
 yea_count = 0
 nay_count = 0
 for word in bill_text:
 if word in yea_common:
 yea_count += yea_common[word]
 print bill, word, yea_common[word], "Yea: ", yea_count, "Nay: ",
nay_count
 if word in nay_common:
 nay_count += nay_common[word]
 print bill, word, nay_common[word], "Yea: ", yea_count, "Nay: ",
nay_count
 if yea_count == nay_count:
 new_bill_votes.update({bill: {"vote": "EQUAL"}})

24	

 elif yea_count > nay_count:
 new_bill_votes.update({bill: {"vote": "Yea"}})
 else:
 new_bill_votes.update({bill: {"vote": "Nay"}})

 for bill in new_bill_votes:
 if vote_dict[bioguide_id]["vote_history"][bill] == "Not Voting":
 pass
 else:
 if new_bill_votes[bill]["vote"] ==
vote_dict[bioguide_id]["vote_history"][bill]:
 right += 1
 total += 1
 #print "predicted: ", new_bill_votes[bill]["vote"],
 # "actual: ",
vote_dict[bioguide_id]["vote_history"][bill],
 else:
 total += 1
 #print "predicted: ", new_bill_votes[bill]["vote"],
 # "actual: ",
vote_dict[bioguide_id]["vote_history"][bill],

 print bioguide_id, "Right: ", right, "Total: ", total, "Percentage: ",
float(right)/total

def main():
 """Used for testing with different values."""
 loadData()
 printCongressmen()
 #printBills()
 #classifierByParty("Z000018")
 #classifierByWords("W000817")
 #classifierByWordsTEST("Z000018")
 #print getIDFreqDist("Z000018")
 #printIDVoteHistory("W000817")
 #getIDFreqDist("Z000018")
 #print full_texts["hr3521-113"]
 #getFreqDist("hr3521-113")
 #getFreqDist("hr4923-114") #UPCOMING BILL

if __name__ == '__main__':
 main()

	

