Final Project Report:

Elevator Control Unit

Brandon Bernier & Christopher Graham

ECE 4140: VLSI Design and Simulation

Professor Proie

December 3, 2013

1. Introduction

The proposed project is an elevator control unit. The system will control three elevators that have the ability to travel up and down to a maximum of seven floors. The theory of operation is very similar to how real elevators work. There will be both call buttons at each floor as well as buttons inside the elevator. When a floor has been selected, an elevator will go up or down to that floor. The elevator that is closest to the floor call that has been selected will be the one that responds. The elevator system makes use of both combinational and sequential logic to make decisions and operate as desired. This project is a great example of a finite state machine that must make decisions based on the current state or position of all three elevators.

2. Overall System Design

The system will specifically allow three elevators to operate independently across seven floors in order to serve requests as efficiently as possible. Initially it was intended to have the system serve eight floors, however, 000 was not a viable input because there was no way to distinguish it from no input. Therefore, the design had to be limited to seven floors of operation. Originally, it was also desired to have the control unit keep track of multiple button presses, and sequentially progress through them. This functionality was found to require a lot of extra logic that would have ballooned the overall transistor count to a range that was felt could not fit in the given bounds of the chip. This was simplified, and the system can currently only handle a single request at a time for the buttons inside each elevator. The inputs are received by the control unit, stored, and then used to compute the best path of each of the elevators. Logic within the system will assist with determining the most efficient path for all three elevators. The system then communicates with each elevator car by outputting a 3-bit number representing the floor that the elevator must progress to.

The system is initialized with all three elevators in a 0 state, meaning the register holding its current location starts at 0. Each elevator must be called at least once to leave this output state and give an actual floor for where the elevator should be located. Technically, any elevator in the 0 state would be sitting at the 1st floor, but it will only output that once it is called to move somewhere. After this, it never again returns to the 0 state.

Another important design decision was the decision to copy and paste layouts into bigger modules instead of simply instancing them. This allowed for a lot of flexibility when hand routing because the lower-level gates were not always designed perfectly for inclusion in the bigger project. This also allowed us to change the size of the V_{DD} and GND rails to 3 contacts wide and expand all the way down a row of components. A thick V_{DD} and GNC rail ensures that they can source enough current to all of the components connected to them without any trouble. This decision made it very easy to connect multiple sub-blocks into bigger modules as well as the final overall layout. It was very simply to connect the rails with large strips of metal1 out to the pads.

Inputs and Outputs

There are 25 input and outputs for this design, excluding power, ground, and the clock. This is further broken down to 16 inputs and 9 outputs. The inputs will consist of the buttons at each floor to call the elevator and the individual floor buttons inside the elevator. The decision to design this system for 3 elevators in a building of up to 7 floors was directly related to the number of I/O pins that would be available. Each floor has a single button with which an elevator can be called. Within each elevator, there will be 7 buttons to get to each of the seven floors. This totals 21 buttons across all three elevators. The system will assume that these buttons are externally encoded to a 3-bit number. That allows us to reduce the necessary inputs from these buttons from 21 to only 9. The control unit will then have 9 output pins, 3 going to each elevator. These outputs will represent the floor that the elevator must travel to. The 3-bit number will be decoded externally to signify floors 1 through 8. This output would be fed to another system powering the actual elevator motors and is simply telling that separate module where to move each elevator.

Figure 2: Top-Level Schematic of the Entire System

Area/Floor Plan

An original estimation for the total number of transistors necessary for the design brought us to between 3,000 and 3,500 transistors total. The actual final transistor count was 3764. From this rough estimation, we predicted that the design would require anywhere between 0.75mm² and the full 0.9mm² of usable area. The final dimensions of the system layout are roughly 780x760µm, for a total area of only 0.593mm². The final area came in much smaller than expected for this number of transistors due to a lot of work on the layouts ensuring they were as compact and efficient as possible. Even in the final design, there is a noticeable amount of blank space between many of the modules, which could have easily been avoided to condense the design down even further. The exact floor plan of the final modules within the PAD frame follows below.

Figure 3: Accurate Layout Floor Plan Showing Major Modules

Group Breakdown

The breakdown of work for this project is as follows. Brandon focused on the necessary memory elements in the design including all of the data registers. He also be verified the layout and operation of all of the simple gates and blocks necessary for the design. Brandon was also be tasked with testing the system. Together we designed the necessary components for the overall schematic of the system. Brandon debugged the schematic to the point where we were able to have all three elevators functioning as expected. Brandon also handled the majority of the layout for the system including the major modules as well as the final overall layout, PAD frame placement, and GDS tape out. Chris focused on completion of the schematic and verification of each sub-block. He was responsible for compiling the majority of the figures and verification results of the individual modules for the final report.

3. Lower-Level Design Implementation

Full Adder

A one-bit full adder adds two one-bit numbers A and B. The full adder is used to create a 3-Bit full adder.

Full Adder Schematic

Full Adder Symbol

Full Adder Layout (Area ≈ 25x90µm)

Full Adder Extracted View

```
@(#)$CDS: LVS version 6.1.5 05/04/2012 23:29 (sjfd1224) $
Command line: /apps/cadence/ic6155/tools.lnx86/dfII/bin/32bit/LVS -dir /home/seas/c Like matching is enabled.
Net swapping is enabled.
Using terminal names as correspondence points.
Compiling Diva LVS rules...
     Net-list summary for /home/seas/crgraham/cadence/LVS/layout/netlist
        count
         26
                            nets
         7
                            terminals
         21
                            pmos
         21
                            nmos
     Net-list summary for /home/seas/crgraham/cadence/LWS/schematic/netlist
        count
         26
                            nets
         7
                            terminals
         21
                            pmos
         21
                            nmos
    Terminal correspondence points
    N22
N21
                N6
                            Α
                N7
                            в
     N24
                N9
                            Cin
    N25
                N5
                            Cout
    N20
                N2
                            s
     N19
                NŪ
                            gnd!
    N23
                            vddl
                N1
Devices in the netlist but not in the rules:
         pcapacitor
Devices in the rules but not in the netlist:
         cap nfet pfet nmos4 pmos4
```

```
The net-lists match.
```


3-Bit Full Adder

The three bit full adder adds two three bit binary numbers. The three bit full adder is made from three full adders. The three bit full adder is used in the elevator control unit to do the addition in the adder subtractor module.

Inputs	Outputs
A0	S0
B0	S1
A1	S2
B1	Cout
A2	
B2	
Cin	

3-Bit Full Adder Schematic

3-Bit Full Adder Symbol

3-Bit Full Adder Layout (Area ≈ 109x102µm)

3-Bit Full Adder Extracted View

3-Bit Full Adder LVS Report

2-to-1 MUX

A multiplexer selects either input A or B to be outputted. The multiplexer is used to create a 4 to 1 multiplexer.

Inputs	Outputs
A	OUT
В	
S	

2-to-1 MUX Schematic

2-to-1 MUX Symbol

2-to-1 MUX Extracted View

2-to-1 MUX LVS Report

4-to-1 MUX

The 4 to 1 multiplexer consists of three 2 to 1 multiplexers. The 4 to 1 multiplexer operates the same way as a 2 to 1 multiplexer but has more inputs. The 4 to 1 multiplexer is used in the elevator control unit to create the 3 bit adder subtractor module.

Inputs	Outputs
A	OUT
В	
С	
D	
S0	
S1	

4-to-1 MUX Schematic

4-to-1 MUX Symbol

4-to-1 MUX Layout (Area ≈ 31.8x39µm)

4-to-1 MUX Extracted View

@(#)\$CDS: LWS version 6.1.5 05/04/2012 23:29 (sjfdl224) \$

Command line: /apps/cadence/ic6155/tools.lnx86/dfII/bin/32bit/LWS -dir /home/sea Like matching is enabled. Net swapping is enabled. Using terminal names as correspondence points. Compiling Diva LWS rules... Net-list summary for /home/seas/crgraham/cadence/LVS/layout/netlist count 14 nets terminals pmos 9 9 9 nmos Net-list summary for /home/seas/crgraham/cadence/LWS/schematic/netlist count 14 9 9 9 nets terminals pmos Terminal correspondence points N12 N11 N6 N2 A B N10 N9 N8 N8 C D OUT N3 N5 N6 N5 N4 N10 S0 S1 gnd! vdd! N7 N13 NŪ N1 Devices in the netlist but not in the rules: pcapacitor Devices in the rules but not in the netlist: cap nfet pfet nmos4 pmos4

The net-lists match.

3-Bit Adder Subtractor

The 3 bit adder subtractor consists of 4 to 1 multiplexers, 3 bit adders, and xor gates. The 3 bit adder subtractor either subtracts or adds two three bit numbers depending on the input. The 3 bit adder subtractor is used in the comparison module to figure out which elevator is closest to the floor selected.

Inputs	Outputs
A0	SO
B0	S1
A1	S2
B1	
A2	
B2	
Sub	

3-Bit Adder Subtractor Schematic

3-Bit Adder Subtractor Symbol

3-Bit Adder Subtractor Layout (Area ≈ 149x209µm)

3-Bit Adder Subtractor Extracted View

@(#)\$CDS: LVS version 6.1.5 05/04/2012 23:29 (sjfd1224) \$

Coğmand line: /apps/cadence/ic6155/tools.lnx86/dfII/bin/32bit/LVS -dir /home/se: Like matching is enabled. Net swapping is enabled. Using terminal names as correspondence points. Compiling Diva LVS rules... Net-list summary for /home/seas/crgraham/cadence/LVS/layout/netlist count 193 12 nets necs terminals pmos nmos 189 189 Net-list summary for /home/seas/crgraham/cadence/LVS/schematic/netlist count 193 nets terminals pmos nmos 12 189 189
 Terminal
 correspondence
 points

 N186
 N24
 A0

 N185
 N16
 A1

 N184
 N4
 A2

 N192
 N9
 B0

 N191
 N28
 B1

 N192
 N14
 B2
 A0 A1 A2 B0 B1 B2 S0 S1 S2 Sub N183 N13 N182 N181 N189 N29 N25 N2 N0 N1 N187 N188 gnd! vdd!

Devices in the netlist but not in the rules: pcapacitor Devices in the rules but not in the netlist: cap nfet pfet nmos4 pmos4

The net-lists match

3-Bit Adder Subtractor LVS Report

3-Bit Adder Subtractor Simulation

D Flip Flop

The d flip flop is used to create memory in the elevator control unit. A single d flip flop will store a data value for a clock cycle. D flip flops are cascaded together to create registers.

D Flip Flop Schematic

D Flip Flop Symbol

D Flip Flop Layout (Area ≈ 31.8x58µm)

D Flip Flop Extracted View

```
@(#)&CDS: LVS Version 6.1.5 U5/04/2012 23:29 (s]T01224) &
Command line: /apps/cadence/ic6155/tools.lnx86/dfII/bin/32bit/LWS -dir /home/s
Like matching is enabled.
Net swapping is enabled.
Using terminal names as correspondence points.
Compiling Diva LVS rules...
    Net-list summary for /home/seas/crgraham/cadence/LVS/layout/netlist
       count
        21
                         nets
        7
                         terminals
        16
                         pmos
        16
                         nmos
    Net-list summary for /home/seas/crgraham/cadence/LVS/schematic/netlist
       count
        21
                         nets
        7
                         terminals
        16
                         pmos
        16
                         nmos
    Terminal correspondence points
    N18
               N8
                         CLK
    N15
               ΝЗ
                         CLRn
    N19
               N9
                         D
    N16
               N4
                         Q
    N17
               N10
                         Q_bar
                         gnd!
    N14
               NŪ
    N20
               N1
                         vdd!
Devices in the netlist but not in the rules:
        pcapacitor
Devices in the rules but not in the netlist:
        cap nfet pfet nmos4 pmos4
```

The net-lists match.

D Flip Flop LVS Report

3-Bit Register

The 3 bit register consists of three d flip flops. The register stores three data values every clock cycle. The register is used in the elevator control unit to store the values of button presses.

Inputs	Outputs
D0	Out0
D1	Out1
D2	Out2
CLK	
CLRn	

3-Bit Register Schematic

3-Bit Register Symbol

3-Bit Register Layout (Area ≈ 108x65µm)

3-Bit Register Extracted View

@(#)\$CDS: LVS version 6.1.5 05/04/2012 23:29 (sjfd1224) \$

Command line: /apps/cadence/ic6155/tools.lnx86/dfII/bin/32bit/LWS -dir /home/ Like matching is enabled. Net swapping is enabled. Using terminal names as correspondence points. Compiling Diva LVS rules... Net-list summary for /home/seas/crgraham/cadence/LWS/layout/netlist count 55 nets 10 terminals 48 pmos 48 nmos Net-list summary for /home/seas/crgraham/cadence/LVS/schematic/netlist count 55 nets 10 terminals 48 pmos 48 rmos Terminal correspondence points N50 N7CLK N10 N47CLRn N54 ПŪ N4 N53 N12 D1 N52 D2 N11 N49 OutO N8 N48 N9 Out1 N46 Out2 NЗ gnd! vdd! N45 NŪ N51 N1 Devices in the netlist but not in the rules: pcapacitor Devices in the rules but not in the netlist: cap nfet pfet nmos4 pmos4

The net-lists match.

8-Bit Register

The 8 bit register is similar to the 3 bit register in terms of operation. The 8 bit register stores eight data inputs every clock cycle. The 8 bit adder is used to store the locations of each elevator.

Inputs	Outputs
D0	QO
D1	Q1
D2	Q2
D3	Q3
D4	Q4
D5	Q5
D6	Q6
D7	Q7
CLK	
CLRn	

8-Bit Register Schematic

8-Bit Register Symbol

8-Bit Register Layout (Area ≈ 143x125µm)

8-Bit Register Extracted View

Net-list summary for /home/seas/crgraham/cadence/LVS/layout/netlist

C-118C	soundary	LOL	/nome/se
count			
140		X	nets
20		1	cerminals
128		ĩ	omos
128		Ŷ	nmos

Net-list summary for /home/seas/crgraham/cadence/LVS/schematic/netlist

	 ,,
count	
140	nets
20	terminals
128	pmos
128	nmos

Terminal correspondence points

N13	0	N16	CLK			
N12	9	N27	CLRn			
N13	9	N19	DO			
N13	8	N25	D1			
N13	7	N13	D2			
N13	6	N23	D3			
N13	5	N22	D4			
N13	4	N26	D5			
N13	3	N9	D6			
N13	2	N7	D7			
N12	8	N24	Q0			
N12	7	N10	Q1			
N12	6	N18	Q2			
N12	5	N17	Q3			
N12	4	N20	Q4			
N12	3	N15	Q5			
N12	2	N12	Q6			
N12	1	N8	Q7			
N12	0	NO	gnd!			
N13	1	N1	vdd!			
Devices	in the	e netlist	but not	in	the	rules
2041003	ncanar	itor	200 1100	411	0110	10200.
	beabou					

Devices in the rules but not in the netlist: cap nfet pfet nmos4 pmos4

The net-lists match.

8-Bit Register LVS Report

3-Bit Comparator

The 3 bit comparator is used to compare two binary numbers. The 3 bit comparator is used in the comparison module to compare the location of each elevator.

Inputs	Outputs
A0	AltB
B0	AgtB
A1	AeqB
B1	
A2	
B2	

3-Bit Comparator Schematic

3-Bit Comparator Symbol

3-Bit Comparator Layout (Area ≈ 110x73µm)

3-Bit Comparator Extracted View

8-to-3 Encoder

The 8 to 3 encoder converts multiple inputs into a binary signal. The 8 to 3 encoder is used in the floor call module to encode the floor button presses into a binary number.

Inputs	Outputs
INO	OUT0
IN1	OUT1
IN2	OUT2
IN3	
IN4	
IN5	
IN6	
IN7	

8-to-3 Encoder Schematic

8-to-3 Encoder Symbol

8-to-3 Encoder Layout (Area ≈ 41x87µm)

8-to-3 Encoder Extracted View

Ś	X11	Applications	Edit	Window	w Help	
0	0				X /I	hor
<u>F</u> ile	<u>H</u> elp					
@(#)\$	CDS: L	VS version 6.1.	5 05/04	/2012 23:	3:29 (sifdl224) \$	
Comma Like Net s Using Compi	nd lin matchi wappin termi ling D	e: /apps/cadeno ng is enabled. g is enabled. nal names as co iva LVS rules	e/ic615 rrespon	5/tools.1 dence poi	lnx86/dfII/bin/32bit/L∀S -dir /hom	ne/
N	et-lis coun 30 13 21 21	t summary for / t ne te pn nn nn	home/se ts rminals os os	as/bberni	nier/cadence/LVS/layout/netlist	
N	et-lis coun 30 13 21 21	t summary for / t ne te pn nn	home/se ts rminals os os	as/bberni	nier/cadence/LVS/schematic/netlist	
T N N N N N N N N N N N N N N N N	'ermina 26 25 22 22 22 22 22 20 29 20 29 28 29 28 29 28 29 28 29 28 29 28 27	l correspondenc N7 IN N10 IN N5 IN N4 IN N2 IN N6 IN N12 IN N9 IN N3 OU N11 OU N8 OU N0 gr N1 vo	e point 0 12 23 44 55 66 77 70 T1 T2 d! d!	.9		
Devic Devic	es in pca es in cap	the netlist but pacitor the rules but r nfet pfet nmos	not in t in t 4 pmos4	the rule he netlis	les: ist:	
The n	et-lis	ts match.				

8-to-3 Encoder LVS Report

Comparison Module

The comparison module compares the location of each of the three elevators in the elevator control unit.

Inputs	Outputs
ENC0	EL1En
ENC1	EL2En
ENC2	EL3En
EL1.0	
EL1.1	
EL1.2	
EL2.0	
EL2.1	
EL2.2	
EL3.0	
EL3.1	
EL3.2	

Comparison Module Schematic

Comparison Module Symbol

Comparison Module Layout (Area ≈ 247x631µm)

Comparison Module Extracted View

			_
Like matchi	ng is enab	oled.	
Net swappin	q is enabl	Led.	
Using termi	nal names	as correspondence points.	
Commiling D	iva LVS ru	1]ea	
Net-lie	t aummaru	for /home/seas/bhernier/cadence/LVS/layout/netlist	
100-110	+	101 /Home/ Seas/DoelHiel/ Cadence/Ev3/ Layouc/Heclisc	
210	6	naha.	
/19		nets	
1/		terminals	
720		pnos	
720		nnos	
Net-lis	t summary	for /home/seas/bbernier/cadence/LVS/schematic/netlist	
coun	t		
719		nets	
17		terminals	
720		pmos	
720		กมเอร	
Termina	l correspo	undence points	
N709	N10	FL1.	
N707	N26	EL1 1	
N706	N37	FT.1 2	
N702	107	FILE	
11703	1130	FLICI	
1710	M07	EL2.0 FIO 1	
N717	NZ7	ELZ. 1 21.0	
N/16	N33	ELZ. Z	
N/15	NZZ	ELZEN	
N/11	N30	EL3. U	
N710	NS	EL3.1	
N708	N35	EL3.2	
N704	N23	EL3En	
N714	N24	ENCO	
N713	N4	ENC1	
N712	N36	ENC2	
N702	N1	and!	
N705	NÜ	vdd!	
Devices in	the netlis	st but not in the rules:	
pca	pacitor		
Devices in	the rules	but not in the netlist:	
cap	nfet pfet	mos4 mos4	
oop	neoo prov	ranoor phoor	
The net-lis	ts match		
2110 1100 220	ee mereek.		
		layout schematic	
		instances	
		1113001003	_
-			

Comparison Module LVS Report

Floor Calls Module

Inputs	Outputs				
CLK	ENC0				
D0	ENC1				
D1	ENC2				
D2	EncOR				
D3					
D4					
D5					
D6					
D7					

The floor calls module takes the elevator floor button presses and converts them into a 3 bit output. The module also checks to see if a button has been pressed.

Floor Calls Module Schematic

Floor Calls Module Symbol

Floor Calls Module Extracted View (Area ≈ 143x199µm)

11	@(#)\$CD2: P#2 AGI2IOU	0.1.5 05/04/2012 25:25 (5]101224) 5
1	Command line: /apps/c Like matching is enab Net swapping is enabl Using terminal names Compiling Diva LVS ru	adence/ic6155/tools.lnx86/dfII/bin/32bit/LWS -dir /home/sez led. ed. as correspondence points. les
	Net-list summary count 177 15 166 166	for /home/seas/bbernier/cadence/LVS/layout/netlist nets terminals pmos nmos
	Net-List summary count 177 15 166 166	<pre>for /home/seas/bbernier/cadence/LVS/schematic/netlist nets terminals pmos</pre>
	Terminal correspo N163 N10 N176 N22 N175 N18 N174 N23 N173 N17 N172 N15 N171 N16 N170 N21 N169 N24 N168 N12 N167 N11 N166 N25 N165 N5 N162 N1 N164 N0 Daviess in the peths	ndence points CLK D0 D1 D2 D3 D4 D5 D6 D7 ENC0 ENC1 ENC2 Enc0R gnd! t but not in the rules:
1	pcapacitor pcapacitor Devices in the rules cap nfet pfet	but not in the netlist: nmos4 pmos4
	The net-lists match.	
		layout schematic
	<	

Floor Calls Module LVS Report

Elevator Module

The elevator module contains all the logic for the elevator to move up and down.

Inputs	Outputs
CLK	OUT0
INO	OUT1
IN1	OUT2
IN2	
EncOR	
ENC0	
ENC1	
ENC2	
Compln	

Elevator Module Schematic

Elevator Module Symbol

Elevator Module Layout (Area ≈ 178x360µm)

Elevator Module Extracted View

Ś	X11	Applications	Edit	Window	Help
0	0				X /home
Eile	<u>H</u> elp				
0/#\\$	ons. IV	mercion 6 1 1	05/04	/0010 03.0	0 (====================================
6(#)\$	003: 643	version 6.1.:	03/04	/2012 63:6:	> (3]IUI224) 0
Conna Like	nd line: matching	/apps/cadence is enabled.	e/ic615	5/tools.ln	x86/dfII/bin/32bit/L∀S -dir /home/se
Net s	vapping	is enabled.		dence point	-
Conpi	ling Div	7a LVS rules	respon	conce point	urd i
N	et-list	summary for /	10me/se	as/bbernie	r/cadence/L∀S/layout/netlist
	count 345	net	t.a		
	14	te	minals		
	332	pm)8)8		
N	et-list	summary for A	nome/se	as/bbernie	r/cadence/L∀S/schematic/netlist
	count	, , ,			
	14	te	rminals		
	332 332	pm)8)8		
т	erminal	correspondence	point	8	
N	333 332	N48 CLI N50 Con	(DIN		
N	341	N11 EN	, Ô		
N	339	N12 EN	2		
N	338	N10 En/	OR		
N	335	N13 IN	í.		
N	334 344	N20 IN N47 007	200		
N	343	N22 007	r1		
N	342 331	N1 qn	11		
N	337	NO vd	11		
Devic	es in th	he netlist but	not in	the rules	
Devic	es in th cap r	acitor ne rules but no nfet pfet nmos4	ot in t 4 pmos4	he netlist	:
The n	et-list:	match.			
			layo	ut schema	tic
			i	nstances	

Elevator Module LVS Report

Elevator Control Unit

Inputs	Outputs		
CLK	OUT1.0		
IN1.0	OUT1.1		
IN1.1	OUT1.2		
IN1.2	OUT2.0		
IN2.0	OUT2.1		
IN2.1	OUT2.2		
IN2.2	OUT3.0		
IN3.0	OUT3.1		
IN3.1	OUT3.2		
IN3.2			
Floor1			
Floor2			
Floor3			
Floor4			
Floor5			
Floor6			
Floor7			

The elevator control unit is the final design of the system.

Elevator Control Unit Schematic

Elevator Control Unit Symbol

Elevator Control Unit Layout (Area ≈ 780x760µm)

Elevator Control Unit Extracted View

. É.,	X11	Applications	Edit Wi	ndow	Help
				000	
				<u>F</u> ile <u>H</u>	elp
IN2.2 IN3.0 IN3.1 IN3.2 OUT1.0 OUT1.1 OUT1.2 OUT2.0 OUT2.0 OUT2.1 OUT2.2 OUT3.0 OUT3.1 OUT3.2 gnd! vdd! ut not :	in the	rules: etlist:		N186 N186 N187 N187 N187 N186 N189 N189 N189 N187 N187 N187 N187 N188 N188 N188 N188	55 N30 39 N21 38 N2 35 N33 72 N15 70 N34 59 N29 92 N29 91 N16 90 N23 74 N6 73 N9 71 N10 58 N1 76 N0 in the netlist br pcapacitor in the rules but cap nfet nfet nm
054 pilos	54			The net-	-lists match.
lay	yout : instar 0 0 0 3764 3764	schematic 0 0 0 0 3764 3764			un-matched rewired size errors pruned active total
	net: 0 0 1893 1893 termin 0	0 0 1893 1893 1893			un-matched merged pruned active total un-matched
	0 28	0 28			matched but different type total
eas/bbe	rnier/	cadence/LVS/sch	ematic	Probe fi	iles from /home/s

Elevator Control Unit LVS Report

Elevator Control Unit Pad

Elevator Control Unit Pad Symbol

Elevator Control Unit Pad Layout

Elevator Control Unit Extracted View

4. Testing Procedures

If this chip were to be fabricated, the testing procedure would be very similar to the simulations performed within Virtuoso. Inputs would need to be set up in a similar fashion and timed to recreate the simulation. There would need to be buttons capable of outputting pulses that last for at least 2 clock cycles to ensure the control unit receives the input. The outputs could be hooked up to a microcontroller capable of reading the values and converting them to decimal digits to display what floor the elevator should be on. It could also do this at a delay, because the control unit itself will change the floor every clock cycle, which would be indistinguishable to the human eye.

Obviously, the chip could not be tested exhaustively because the number of states and possible inputs is immense. It would need to be assumed that any test situation thrown at it would be representative of real world use cases and a variety of them could be tested, just not all.

5. Overall System Results

Critical System Specifications

- Total Transistor Count: 3764
- Total Area: 780x760µm = 0.5928mm²
- Maximum Operating Frequency: ~40MHz
- Minimum Input Pulse: 2*Clock Period
- Average Power Consumption:
 - Without PAD Frame: 7.088µW
 - With PAD frame: 139.3µW
 - D Flip Flop Setup/Hold Time:
 - Setup Time: 62ps
 - Hold Time: 953ps

Test to Find Setup and Hold Time

Two parametric simulations were run to find the set and hold time for the D Flip Flop. First, the start of the input pulse was varied to determine how long before the clock pulse it needed to go high to have the output follow as expected. Once the set time was determined, the length of the input pulse was varied to see how short it could be made and still get the correct output. This allowed us to compute both the set and hold times determined above.

Also important to note, the maximum operating frequency was found to be roughly 40MHz before the operation of the system began to seriously degrade. This, however, is not extremely important in the design because it simply needs to be clocked fast enough to get the input pulses from the elevator buttons. A single button press is usually longer than 10ms, so a much slower frequency would suffice. The elevators also are not moving between floors that fast, so this does not affect clock time either. All simulations were run off a 40KHz clock.

Final System Simulations

Simulation Results off Schematic View

Overall Test 1 from PAD Frame

Overall Test 1 shows multiple calls for an elevator at the first floor. Each elevator starts uninitialized in the 0 state, and must then initialize its register to 1 at each call for an elevator. When all the elevators are on the same floor, it is built into the chip that Elevator 1 would take the task. Similarly, if 2 and 3 were at the same floor and closest to the call for an elevator, Elevator 2 would go instead of Elevator 3. Here, Elevator 1 responds to the first call, coming to floor 1 and holding until it receives an input from within the car to move to floor 6. It then proceeds to output 2, 3, 4, 5, and finally 6 steadily once it reaches that point. On the next call, Elevator 2 responds and is told to go to floor 4. Finally, Elevator 3 gets called to go to floor 5. At the very end, a final call at floor 1 requires the system to decide which elevator is closest, with them now being at floors 6, 4, and 5, respectively. It correctly chooses to send Elevator 2 because it is closest and that elevator begins moving down to floor 3 as can be seen at the far right of the test.

Overall Test 2 from PAD Frame

This test is similar to the previous one in that it has multiple calls, however, this time from multiple floors. The elevators respond accordingly, and it is important to note that Elevator 2 responds to both the 2nd and 3rd calls at the 1st and 5th floors, respectively. It completes a request to go to the 4th floor, then gets a call from the 5th floor because it is only 1 floor down. Elevator 3 responds to the final floor 1 call, however, floor 1 is pressed inside the elevator, so it remains there and waits on another input.

Extracted Simulation without the PAD Frame Showing Power Consumption

Extracted Simulation with PAD Frame Showing Power Consumption

In the simulations with power consumption, it was interesting that the average power found with the PAD frame was much higher than that simulated without it. This is most likely simply due to the case that the simulations performed without the PAD frame did not take into account the input capacitances as well as those on the outputs. The PAD frame simulation is obviously more realistic to what may be found in real life. Another interesting note is that without the PAD frame, the power peaks were actually close to momentary spikes at 3W, but with the PAD frame, the spikes were only 1W.

6. Conclusion

In conclusion, this project provided students with the opportunity for hands on design and layout of an ASIC. Students used the knowledge they built throughout the class lectures and lab sessions to complete a functional design and layout the entire design for fabrication. The project used industry standard tools necessary to success in the VLSI field. The specific elevator control unit project posed many challenges that were not initially taken into consideration. For one, the actual design of the schematic to fulfill the necessary logical requirements was much harder than anticipated. The control unit is dependent upon a lot of control logic, not simply chaining a lot of gates together to perform an operation. Each component had to be carefully thought out to produce the desired decision. When it came to the layout, this also proved challenging because it was a connection of many random gates as opposed to a uniform setup of many of the same blocks. Overall, the challenges were mainly overcome and the project was a success. In the future, it would be useful to add more realistic functionality to the elevator such as up and down buttons at each floor; however, under the time and area constraints for this project, the chip is pretty versatile.

7. References

[1] Chandrakasan, Anantha, Borivoje Nikolic, and Jan M. Rabaey. *Digital Integrated Circuits: A Design Perspective*, 2nd ed. Prentice Hall, 2003.